Выбор стратегии в условиях риска (при наличии вероятностной информации). Методы выбора альтернатив в условиях риска и неопределенности. Общие принципы. Теория игр Критерии выбора наилучших стратегий в условиях неопределенности

Неопределенность относительно состояния системы может быть вызвана двумя обстоятельствами: недостатком ясности, когда не известны все возможные состояния, и недостатком уверенности, когда все состояния известны, но нет возможности точно указать, какое именно реализуется.

Неопределенность также подразумевает отсутствие информации о вероятностном распределении состояний. В противном случае это относится к ситуации риска.

Каким же образом можно принимать решения в ситуации неопределенности?

Если неопределенность вызвана отсутствием ясности, то принять формализованное объективное решение практически не представляется возможным. Нельзя точно оценить альтернативы, когда неизвестно, что вообще может произойти. Следовательно, требуется если не устранить неопределенность, то хотя бы свести ее к недостатку уверенности. Это можно сделать двумя способами:

· либо исследовать явление, порождающее неопределенность, больше узнать про него и выявить все возможные состояния,

· либо принять допущение, ограничивающее множество возможных состояний (например, совокупностью всех известных состояний). Разумеется, такое упрощение отражается на надежности принимаемых решений, но часто оно является единственно возможным выходом.

Если же неопределенность вызвана невозможностью точно предсказать, какое состояние из числа возможных реализуется, то тут также есть два пути:

· либо применить формализованные методы принятия решений в условиях неопределенности, обеспечивающие оптимальный выбор на только основе имеющейся информации об исходах;

· либо попробовать привести все к ситуации риска, получив путем исследований или допущений информацию о вероятностном распределении исходов. Тогда становится возможным применение методов принятия решений в условиях риска, которые дают более взвешенные результаты, при условии, что предполагаемое распределение близко к реальному.

Одним из методов, позволяющих принимать решения в условиях неопределенности, являются так называемые «игры», исследуемые в рамках математической теории игр. Принципиально выделяют два основных вида таких игр:

стратегические игры и

игры с природой.

Аппарат стратегических игр применяется для принятия решений в условиях взаимодействия. Там неопределенность связана с действиями других лиц, которые целенаправленно стремятся максимизировать свой выигрыш. ЛПР не знает точно, что будут делать противники. Однако он может обоснованно предполагать, что они осознанно выбирают стратегии наилучшие для себя и наихудшие для других (в т.ч. и для нашего ЛПР). Методы стратегических игр позволяют выбрать оптимальную стратегию в условиях такого противодействия.

Если же целенаправленного противодействия нет, и неопределенность связана с объективными (независящими от воли конкретных субъектов) обстоятельствами, то применяется аппарат "игр с природой". При этом под "природой" не обязательно подразумевается живая или неживая природа (биосфера, атмосфера и т.д.). Это может быть рынок или иная совокупность субъектов, которые не конфликтуют с нашим ЛПР, а просто совершают непредсказуемые для него действия. Такая "природа" безразлична к выигрышу или проигрышу ЛПР и не стремится обратить его просчеты в сою пользу. Естественно, что логика принятия решений в таких условиях несколько отличается от логики стратегических игр.

Рассмотрим некоторые положения теории игр.

Теория игр –– это наука, изучающая стратегические решения людей, фирм, правительств и других агентов.

Стратегические решения –– это такие решения, которые принимаются с учетом действий других агентов и которые влияют на полезность других агентов.

Ситуации, в которых действия одних агентов оказывают влияние на других агентов, –– то есть такие ситуации, в которых агенты принимают стратегические решения, –– называют стратегическими взаимодействиями (или играми). Агентов, участвующих во данных взаимодействиях, называют игроками. Виды стратегических взаимодействий представлены на рис. 20.

Рис. 20. Виды стратегических взаимодействий.

Игры могут быть представлены в нормальной форме (матрица), когда принятие решений осуществляется одновременно, и в развернутой форме (дерево) – при последовательном принятии решений. Рассмотрим оба способа.

Условия риска и неопределенности характеризуются так называемыми условиями многозначных ожиданий будущей ситуации во внешней среде. В этом случае ЛПР должен сделать выбор альтернативы (Аi), не имея точного представления о факторах внешней среды и их влияния на результат. В этих условиях исход, результат каждой альтернативы представляет собой функцию условий – факторов внешней среды (функцию полезности), который не всегда способен предвидеть ЛПР. Для предоставления и анализа результатов выбранных альтернативных стратегий используют матрицу решений, называемую также платежной матрицей, или матричной игрой . Пример матрицы приведен в табл. 2.

Таблица 2

A1, A2, A3 –альтернативные стратегии действий; S1, S2, S3 – состояние экономики (стабильность, спад, рост и др.); E11; E12; E13; E21; … E33; … – результаты решений.

Числа в ячейках матрицы представляют собой результаты реализации Eij стратегии Ai в условиях Sj. При этом в условиях риска вероятность наступления Sj известна – wj(Sj). Методы принятия решений в условиях риска используют теорию выбора, получившую название теории полезности. В соответствии с этой теорией ЛПР выбирает Ai из совокупности {Ai} (i = 1 … n), которая максимизирует ожидаемую стоимость его функции полезности E,j. В условиях риска при принятии решения основным моментом является определение вероятности наступления состояния среды Sj , т. е. степени риска. После определения вероятности wj(Sj) наступления состояния среды Sj, определяют ожидаемую стоимость реализации каждой альтернативы, которая представляет собой средневзвешенную стоимость E(Ai):

Отметим, что в рассматриваемых нами задачах на принятие решения в качестве исходов Е ij мы будем рассматривать показатели, которые желательно максимизировать - выигрыш, доход, прибыль. К ним применяется принцип "чем больше, тем лучше". Все принципы выбора оптимальной альтернативы будут сформулированы именно для таких показателей.

Если в матрице игры в качестве исходов надо представить показатели, которые подлежат минимизации - убытки, расходы, потери, то здесь возможны два пути:

1) представлять их в матрице виде отрицательных значений. Тогда можно без изменений использовать приведенные далее в книге формулы, операции сравнения и принципы определения оптимальной альтернативы;

2) представлять их в матрице в виде положительных значений. В этом случае необходимо поменять в приведенных в книге формулах: операции максимизации на минимизацию и наоборот, операции сравнения при определении оптимальных альтернатив с "больше" и "больше или равно" - на "меньше" и "меньше или равно", и наоборот.

Дерево решений применяют тогда, когда необходимо принимать последовательный ряд решений. Дерево решений – графический метод, позволяющий увязать точки принятия решения, возможные стратегии Ai, их последствия Ei,j с возможными факторами, условиями внешней среды. Построение дерева решений начинается с более раннего решения, затем изображаются возможные действия и последствия каждого действия (событие), затем снова принимается решение (выбор направления действия) и т. д., до тех пор, пока все логические последствия результатов не будут исчерпаны. Дерево решений строится с помощью пяти элементов:

1. Момент принятия решения.

2. Точка возникновения события.

3. Связь между решениями и событиями.

4. Вероятность наступления события (сумма вероятностей в каждой точке должна быть равна 1).

5. Ожидаемое значение (последствия) – количественное выражение каждой альтернативы, расположенное в конце ветви.

Простейшее решение представляет собой выбор из двух вариантов – «Да» или «Нет» (рис. 20).

Рис. 20. Простейшее дерево решений

После того как стратегическое взаимодействие формально описано, то есть задана игра, нужно эту игру решить. Что значит «решить игру»? 
Решить игру –– значит найти профиль стратегий, который будет сыгран. При этом мы считаем, что игроки ведут себя рационально.

При решении игр могут применяться различные концепции равновесия, как например,

1. Равновесие в доминирующих стратегиях.

2. Равновесие, получаемое исключением доминируемых стратегий.

3. Равновесие Нэша.

Рассмотрим первый случай.

Пусть имеется игра n лиц в нормальной форме, а (s 1 , . . . , s n) –– некоторый про- филь стратегий. Для любого i = 1, . . . , n положим s− = (s 1 ,...,s i-1 ,s i+1 ,...,s n).


Другими словами, s -i –– это набор стратегий всех игроков, кроме i-го, из профиля (s 1 ,...,s n). Множество всех возможных наборов стратегий всех игроков, кроме i-го, обозначим через S -i .

Таблица А

Пусть i = 2 (табл. А). Тогда для любого профиля стратегий (s 1 , s 2) через s -2 обозначается стратегия первого игрока s 1 .
Множество S -2 имеет в этой игре следующий вид: S -2 = {a 1 , a 2 }.

строго доминирующей , если для любой другой стратегии i-го игрока s′ i ∈ S i и любого набора s -i ∈ S -i стратегий остальных игроков выполняется неравенство

u i (s i , s -i) > ui(s′ i , s -i).

При любых стратегиях других игроков платеж, который получает игрок i, играя стратегию s i , больше, чем платеж, который он получает, играя стратегию s′ i .

В примере таблицы А

· стратегия a 1 первого игрока –– строго доминирующая, поскольку при любой стратегии второго игрока приносит первому игроку строго больший платеж, чем любая другая его стратегия.

· стратегия b 1 второго игрока –– строго доминирующая, поскольку при любой стратегии первого игрока приносит второму игроку строго больший платеж, чем любая другая его стратегия.

Стратегия i-го игрока s i ∈ S i называется слабо доминирующей , если для любой другой стратегии i-го игрока s′ i ∈ S i и любого набора s -i ∈ S -i стратегий остальных игроков выполняется неравенство

u i (s i , s -i) ⩾ u i (s′ i , s -i).


Слабо доминирующие стратегии должны удовлетворять чуть более слабому условию, чем строго доминирующие.

Если в таблице А исправить платеж второго игрока 2 на 7 (ячейка а 1, b 2), то стратегия b 1 для второго игрока будет являться уже не строго, а слабо доминирующей, так как есть еще одна стратегия b 2 , платеж которой равнозначный.

Профиль стратегий (s 1 , . . . , s n) называется равновесием в строго доминирующих стратегиях, если для каждого игрока i, i = 1, . . . , n, стратегия s i является строго доминирующей.

В таблице А профиль стратегий (a 1 ,b 1) является равновесием в строго доминирующих стратегиях, поскольку стратегии a 1 и b 1 –– строго доминирующие.

Аналогично, профиль стратегий (s 1 , . . . , s n) называется равновесием в слабо доминирующих стратегиях, если для каждого игрока i, i = 1, . . . , n, стратегия s i является слабо доминирующей.

Если у игрока в некоторой игре есть строго доминирующая стратегия, то есть все основания полагать, что он будет играть именно ее: если он сыграет эту стратегию, то его выигрыш будет максимален. Но игры, в которых у каждого игрока есть строго доминирующая стратегия, встречаются нечасто: равновесие в строго доминирующих стратегиях –– это концепция решения, подходящая не для всех игр.

Рассмотрим известный пример игры – дилемма заключенного .

Предыстория: полиция поймала двоих человек, подозреваемых в совершении ограбления, но у нее не хватает улик против них. Чтобы собрать улики, полиция развела подозреваемых по разным камерам, лишив их возможности обмениваться информацией, и устроила каждому допрос.

У каждого игрока есть две стратегии:

· промолчать

· пойти на сделку со следствием и сдать напарника.

Платежи игроков:

· если оба заключенных будут молчать, то полиция отправит каждого из них в тюрьму по мягкой статье на 1 год.

· если один заключенный выдаст второго, а второй будет молчать, то тот, против кого дали показания, отправится в тюрьму на 10 лет, а другой пойдет на свободу.

· если оба заключенных пойдут на сделку со следствием, то полиция сможет обвинить обоих в совершении ограбления, но каждому из них уменьшат срок до 5 лет.

Матрица игры:

Есть ли у игроков доминирующие стратегии?

У первого заключенного есть строго доминирующая стратегия –– стратегия «Предать».

У второго заключенного тоже есть строго доминирующая стратегия –– стратегия «Предать».

Профиль стратегий (Предать, Предать) –– это равновесие в строго доминирующих стратегиях. А также –– равновесие в слабо доминирующих стратегиях.

Говорят, что профиль стратегий s Парето-доминирует профиль стратегий s′, если:

u i (s) ⩾ u i (s′) для любого игрока i;

u i (s) > u i (s′) хотя бы для одного игрока i.

Профиль стратегий s∗ называется Парето-оптимальным , если не существует такого 
профиля s′, который Парето-доминирует s∗. Является ли равновесный профиль (Предать, Предать) Парето-оптимальным? Нет! Его Парето-доминирует профиль (Молчать, Молчать): если бы оба игрока промолчали, то каждый получил бы больший платеж, чем в равновесии. А другие профили стратегий Парето-оптимальны? Да. Равновесие в дилемме заключенного –– единственный профиль стратегий, который не является Парето-оптимальным!

Теперь рассмотрим равновесие путем исключения строго (или слабо) доминируемых стратегий.

2) Стратегия s i игрока i строго доминирует стратегию s′ i игрока i, если


u i (s i , s -i) > u i (s′ i , s -i) для любого набора стратегий остальных игроков s -i ∈ S -i .

2) Стратегия s i игрока i строго доминируется стратегией s′ i игрока i, если

u i (s i , s -i) < u i (s′ i , s -i) для любого набора стратегий остальных игроков s -i ∈ S -i .

Обозначение: s i ≺ s′ i .

3) Стратегия s i игрока i слабо доминирует стратегию s′ i игрока i, если


u i (s i , s -i) ⩾ u i (s′ i , s -i) для любого набора стратегий остальных игроков s -i ∈ S -i .

4) Стратегия s i игрока i слабо доминируется стратегией s′ i игрока i, если


u i (s i , s -i) ⩽ ui(s′ i , s -i) для любого набора стратегий остальных игроков s -i ∈ S -i .

Обозначение: s i ≼ s′ i .

Стратегия s i игрока i называется строго доминируемой, если существует стратегия s′ i игрока i, которая строго доминирует стратегию s i .

Стратегия si игрока i называется слабо доминируемой, если существует стратегия s′ i игрока i, которая слабо доминирует стратегию s i .

Если у игрока есть строго доминируемая стратегия, то он, будучи рациональным, никогда не будет ее играть: она принесет ему заведомо меньше, чем некоторая другая его стратегия, которую он тоже может сыграть. Оба игрока понимают, что строго доминируемая стратегия ни при каких обстоятельствах не будет сыграна, поэтому в матричной записи игры мы можем исключить столбец или строку, соответствующие этой стратегии.

Рассмотрим игру

1. Исключим стратегию b 1 , так как b 2 ≺ b 3 .

2. Исключим стратегию a 1 , так как a 1 ≺ a 2 .

3. Исключим стратегию b 3 , так как b 3 ≺ b 1 .

Оставшийся профиль (a 2 , b 1) –– это равновесие, полученное исключением строго доминируемых стратегий.

Если в конечной игре (если множество возможных стратегий игрока конечно) в нормальной форме в результате последовательного исключения строго доминируемых стратегий остается матрица размера 1 × 1, то оставшийся профиль называется равновесием, получаемым исключением строго доминируемых стратегий.

Отметим, что:

· не все игры можно решить последовательным исключением строго доминируемых стратегий;

· порядок исключения строго доминируемых стратегий не имеет значения –– в каком бы порядке мы ни исключали такие стратегии, в результате придем к одному и тому же профилю;

· исключая слабо доминируемые стратегии в разном порядке, мы будем получать разные равновесия;

· если в игре есть равновесие в строго доминирующих стратегиях, то оно является и равновесием, получаемым исключением строго доминируемых стратегий;

· равновесие, получаемое исключением строго доминируемых стратегий,
не обязательно является равновесием в строго доминирующих стратегиях.

Равновесие Нэша – еще один тип равновесия, который может быть получен в матрице игры.

Профиль (s∗ 1 ,..., s∗ n) называется равновесием Нэша (NE), если для любого игрока i и любой его стратегии s i ∈ S i выполняется неравенство

u i (s∗ i , s∗ -i) ⩾ u i (s i , s∗ -i).

Иными словами, равновесием Нэша называется такой профиль стратегий, что никому из игроков не выгодно отклониться и сыграть другую стратегию при фиксированных стратегиях других игроков.

Равновесие Нэша названо так в честь известного математика Джона Нэша, лауреата Нобелевской премии по экономике 1994 года «За анализ равновесия в теории некооперативных игр» (совместно с Райнхардом Зельтеном и Джоном Харсаньи).

Мы можем сформулировать алгоритм нахождения равновесий Нэша в конечных играх двух игроков:

1. Для каждой стратегии второго игрока пометим точками наилучшие ответы первого игрока.

2. Для каждой стратегии первого игрока пометим звездочками наилучшие ответы второго игрока.

3. Профили, которые оказались помечены как точками, так и звездочками, являются равновесиями Нэша.

Пример: игра “Битва полов”

Постановка игры. Муж и жена независимо друг от друга решают, куда пойти вечером: на футбол или на балет. Связь между ними отсутствует, поэтому никто из них не может ничего узнать о том, куда решил пойти другой. Предпочтения супругов таковы, что вечером они хотели бы оказаться в одном месте, но жене больше нравится балет, а мужу –– футбол. Мужу лучше оказаться вместе с женой на балете, чем одному на футболе. Жене лучше пойти на футбол с мужем, чем пойти одной на балет.

У каждого из супругов есть выбор из 2 стратегий: пойти на футбол (Ф) или пойти на балет (Б). Предпочтения супругов можно задать с помощью следующей матрицы платежей:

В ответ на разные стратегии жены, мужу выгодно играть разные стратегии. То же самое верно и для жены.

В нашей матрице платежей получились две клеточки, в которых лучший выбор мужа при фиксированной стратегии жены совпал с лучшим выбором жены при фиксированной стратегии мужа.

Профили стратегий (Ф, Ф) и (Б, Б) в каком-то смысле лучше профилей стратегий (Ф, Б) и (Б, Ф). Если муж и жена оказались вместе на футболе или на балете, то никому из супругов по отдельности не выгодно уйти в другое место при неизменном решении второго остаться. Если супруги оказались вечером в разных местах, то каждому из них выгодно отклониться от выбранной первоначально стратегии.

Таким образом, полученные нами профили стратегий (Ф, Ф) и (Б, Б) являются равновесиями Нэша.

5.3. Методы выбора альтернатив в условиях риска и неопределенности.
Критерии выбора решений

В ситуации неопределенности есть несколько возможных состояний, и разные альтернативы при них обеспечивают различный выигрыш. То есть у нас есть несколько альтернатив, каждая из которых представляет собой набор значений исходов при соответствующих состояниях природы. Эти наборы нельзя просто математически сравнить "целиком", используя понятия "больше-меньше". Такую операцию можно провести только с отдельными членами данных наборов.

Если среди альтернатив нет строго или слабо доминирующих, это означает, что при разных состояниях природы наилучший результат показывают разные альтернативы. Каким же образом можно сравнить между собой эти наборы значений, и как выбрать оптимальный? Здесь на помощь приходят так называемые критерии выбора или просто критерии.

Основная идея любого критерия: заменить целый набор значений одним численным показателем, характеризующим данный набор с определенной точки зрения, и затем просто численно сравнить между собой эти показатели. У какого набора этот численный показатель окажется "лучше" (больше или меньше - зависит от вида критерия и ситуации), тот и будет считаться оптимальным по данному критерию.

Идея простая, но эффективная. Однако существенным недостатком любого критерия является "потеря информации". Из-за "сжатия" целого набора значений в одно единственное число, становятся заметны одни свойства (черты) набора и не видны другие.

Это все равно, что про человека судить только по принципу (т.е. критерию) "плохой" или "хороший". Здесь все качества, черты характера, взгляды человека описываются одним словом. Это легко запомнить, но здесь нет подробной информации. Более того, может происходить ее искажение. Во-первых, не все качества плохого человека могут быть хуже, чем у хорошего (он может быть здоровее или даже умнее). Во-вторых, значение "плохой" или "хороший" соответствует взгляду конкретного субъекта или группы, которые оценили человека по своим субъективным. И, вполне возможно, у других людей существуют свои подходы к присвоению значения "плохой" или "хороший". Поэтому такая оценка не является точной и универсальной.

В общем случае порядок применения критерия выглядит следующим образом:

1) на первом этапе выбирается критерий, по которому будет производиться выбор;

2) для каждой альтернативы рассчитывается значение выбранного критерия. По сути, в соответствие каждой альтернативе ставится одно численное значение критерия (ее количественная оценка);

3) альтернативы сравниваются путем обычного численного сравнения соответствующих им значений критериев;

4) по результатам сравнения оптимальной признается альтернатива, имеющая наилучшее значение критерия. Что считать "наилучшим" - максимальное или минимальное значение критерия - зависит от того, что показывают исходы альтернатив (прибыль, выигрыш или убытки, расходы), и по какому критерию производится сравнение.

Рассмотрим шесть основных критериев, которые можно использовать при сравнении альтернатив в ситуации неопределенности:

· критерий Вальда;

· критерий "максимакса";

· критерий Лапласа;

· критерий Сэвиджа;

· критерий Гурвица;

· обобщенный критерий Гурвица.

Критерий Вальда является самым "осторожным". Согласно ему, оптимальной альтернативой будет та, которая обеспечивает наилучший исход среди всех возможных альтернатив при самом плохом стечении обстоятельств.

Если исходы отражают подлежащие минимизации показатели (убытки, расходы, потери и т.д.), то критерий Вальда ориентируется на "минимакс" (минимум среди максимальных значений потерь всех альтернатив).

Если в качестве исходов альтернатив фигурируют показатели прибыли, дохода и других показателей, которые надо максимизировать (по принципу "чем больше, тем лучше"), то ищется "максимин" выигрыша (максимум среди минимальных выигрышей). Здесь и далее для всех критериев в тексте мы будем рассматривать именно такой случай, когда исход показывает некий выигрыш.

По критерию Вальда оценкой i -й альтернативы является ее наименьший выигрыш:

W i = min(x ij ), j = 1..M

Оптимальной признается альтернатива с максимальным наихудшим выигрышем:

А* = А k , W k = max(W i ), i = 1..N

Пример применения критерия Вальда

Есть два проекта Х 1 и Х 2 , которые при трех возможных сценариях развития региона (j=1..3 ) обеспечивают разную прибыль. Значения прибыли приведены в таблице 2.2. Необходимо выбрать проект для реализации.

Таблица 3

Исходные данные

Если выбор оптимального проекта осуществляется по критерию Вальда, то ЛПР должен выполнить следующие действия:

1. Найти минимальные исходы для каждой альтернативы. Это и будут значения критерия Вальда:

W 1 = min(x 1j), j = 1..3 => W 1 = min(45, 25, 50) = 25

W 2 = min(x 2j), j = 1..3 => W 2 = min(20, 60, 25) = 20

2. Сравнить значения критерия Вальда и найти наибольшую величину. Альтернатива с максимальным значением критерия будет считаться оптимальной:

25 > 20 => W 1 > W 2 => X* = X 1

Если бы решение принималось только по критерию Вальда, ЛПР выбрал для реализации проект Х 1 , поскольку прибыль, которую обеспечит данный проект при самом плохом развитии ситуации, выше.

Выбрав оптимальную альтернативу по критерию Вальда, ЛПР гарантирует себе, что при самом плохом стечении обстоятельств он не получит меньше, чем значение критерия. Поэтому данный показатель еще называют критерием гарантированного результата .

Основной проблемой критерия Вальда является его излишняя пессимистичность, и, как следствие, не всегда логичный результат. Так, например, при выборе по данному критерию между альтернативами А{100; 500} и В{90; 1000} следует остановиться на варианте А . Однако в жизни логичнее было бы выбрать В , так как в худшем случае В лишь немного хуже А , тогда как при хорошем стечении обстоятельств В обеспечивает гораздо больший выигрыш.

Диаметральной противоположностью критерия Вальда является так называемый критерий "максимакса". Если Вальд отражал взгляд предельного пессимиста, то "максимакс" соответствует отношению крайнего оптимизма. Все внимание уделяется только наилучшим исходам, поэтому оценкой i -й альтернативы по данному критерию является ее наибольший выигрыш М i :

М i = mах(x ij ), j = 1..M

Оптимальной считается альтернатива с максимальным наибольшим выигрышем:

Х* = Х k , М k = max(М i ), i = 1..N

Пример применения критерия "максимакса"

В условиях примера из табл. 3 действия ЛПР, использующего критерий "максимакса" для принятия решения, будут следующие:

1. Найти максимальные исходы для каждой альтернативы:

М 1 = max(x 1j), j = 1..3 => М 1 = max(45, 25, 50) = 50

М 2 = max(x 2j), j = 1..3 => М 2 = max(20, 60, 25) = 60

2. Сравнить найденные значения и определить альтернативу с максимальной величиной критерия:

50 < 60 => М 1 < М 2 => X* = X 2

По критерию "максимакса" оптимальным является проект Х 2 ., который может обеспечить наибольшую прибыль при наилучшем стечении обстоятельств.

Критерий "максимакса" не учитывает никакие иные исходы, кроме самых лучших. Поэтому его применение, во-первых, может быть весьма опасным, и, во-вторых, также как и критерий Вальда он может приводить к нелогичным решениям. Например, среди альтернатив А{-100; 0; 500} и В{200; 300; 400} с позиции "максимакса" лучшей является А , однако она несет в себе и опасность убытков (-100 ), и вообще все исходы, кроме лучшего намного уступают В . Поэтому практическое применение критерия "максимакса" весьма ограничено.

Критерий Лапласа основан на принципе недостаточного обоснования . Поскольку в рамках информационного подхода в ситуации неопределенности вероятности состояний неизвестны, то нет оснований утверждать, что они различны. Поэтому можно допустить, что они одинаковы.

По критерию Лапласа в качестве оценки альтернативы используется средний выигрыш:

Оптимальной является альтернатива с максимальным средним выигрышем:

Х* = Х k , L k = max(L i ), i = 1..N

Пример применения критерия Лапласа

Для условий примера из табл. 3 использование критерия Лапласа будет выглядеть следующим образом:

1. Найти среднее арифметическое значение исходов по каждому проекту. Оно является оценкой альтернативы по критерию Лапласа:

L 1 = (x 11 +x 12 +x 13)/3 = (45+25+50)/3 = 40

L 2 = (x 21 +x 22 +x 23)/3 = (20+60+25)/3 = 35

2. Сравнить рассчитанные величины и найти альтернативу с максимальным значением критерия:

40 > 35 => L 1 > L 2 => X* = X 1

По критерию Лапласа оптимальным является проект Х 1 , у которого наибольшая средняя прибыль.

Среднее значение является достаточно популярной мерой в условиях неопределенности и даже риска, однако оно не учитывает разброс результатов относительно этого значения. Так, например, альтернативы А{400; 600} и В{0; 1000} являются эквивалентными по критерию Лапласа (L A = L B = 500 ) , однако альтернатива В более "рискованна", так как предполагает возможность при плохом стечении обстоятельств не получить ничего.

Критерий Сэвиджа несколько отличается от всех остальных. Оценка альтернатив производится не по исходной матрице, а по так называемой "матрице сожалений" или, как ее еще называют в некоторых источниках, "матрице рисков" .

Для произвольной альтернативы и конкретного состояния природы величина "сожаления" равна разнице между тем, что обеспечивает данная альтернатива, и тем, сколько максимально можно выиграть при данном состоянии. С экономической точки зрения величину "сожаления" можно трактовать как недополученный выигрыш (или упущенную выгоду) по сравнению с максимально возможным при данном состоянии природы.

Рассмотрим, каким образом следует выбирать наилучшую альтернативу, руководствуясь критерием Сэвиджа.

1. ОБЩАЯ МЕТОДИКА ФОРМИРОВАНИЯ КРИТЕРИЕВ

Суть предлагаемой методики формирования критериев заключается в реализации следующих пунктов.

1) Из выигрышей аij, i=1,…,m; j=1,…,n, игрока А составляем матрицу А, предполагая, что она удовлетворяет указанным выше условиям: m³2, n³2 и она не содержит доминируемых (в частности, дублируемых) строк.

Выигрыши аij игрока А, представленные в виде матрицы А, дают возможность лучшего обозрения результатов выбора стратегий Аi, i=1,…,m, игроком А при каждом состоянии природы Пj, j=1,…,n.

2) Фиксируем распределение удовлетворяющих условию (1) вероятностей qj=p(Пj), j=1,…,n, состояний природы Пj, j=1,…n, разумеется, если они известны. Таким образом, пункт 2 участвует в методике формирования критерия в случае принятия решения в условиях риска.

3) На основании пунктов 1 и 2 выбираем натуральное число l, 1£l£n, и определенным образом строим матрицу


Назовем их коэффициентами формируемого критерия. Они призваны играть роль количественных оценок некоторых субъективных проявлений игрока А (лица, принимающего решение), а именно степени доверия к распределению вероятностей состояний природы и степени его пессимизма (оптимизма) при принятии решений.

5) Используя матрицу В и коэффициенты l1,…, ll, каждой стратегии Аi, i=1,…,m, игрока А поставим в соответствие число


7) Определим оптимальную стратегию.

Оптимальной стратегией назовем стратегию Аk с максимальным показателем эффективности, другими словами, - стратегию, показатель эффективности Gk которой совпадает с ценой игры G:


Понятно, что такое определение оптимальной стратегии не влечет ее единственности.

Отметим, что по логике этого пункта игрок А, выбирая оптимальную стратегию, максимизирует показатель Gi (см. (5)). Это обстоятельство оправдывает то, что этот показатель мы назвали (в пункте 5) показателем эффективности.

2. ФОРМИРОВАНИЕ НЕКОТОРЫХ ИЗВЕСТНЫХ КРИТЕРИЕВ-ЧАСТНЫЕ СЛУЧАИ ОБЩЕЙ МЕТОДИКИ

Критерий Байеса (, , , ).

1) Пусть А является матрицей выигрышей игрока А.

2) Известны вероятности qj=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, удовлетворяющие условию (1). Следовательно, речь идет о принятии решения в условиях риска.

3) Полагаем l=n и матрицу В выбираем равной матрице А, т.е.

bij=aij для всех i=1,…,m и j=1,…,n.

4) Коэффициенты l1,…,ln, выбираем равными соответствующим вероятностям q1,…,qn, т.е. ll=qi, i=1,…,n. Этим самым игрок А выражает полное доверие к истинности распределения вероятностей q1,…,qn, состояний природы.

Из (1) следует, что коэффициенты lj, j=1,…,n удовлетворяют условию (3).

5) Показатель эффективности стратегии Аi по критерию Байеса обозначим через Вi и находим его по формуле (3):


Очевидно, что Вi – средневзвешенный выигрыш при стратегии Аi с весами q1,…,qn.

Если стратегию Аi трактовать как дискретную случайную величину, принимающую значения выигрышей при каждом состоянии природы, то вероятности этих выигрышей будут равны вероятностям состояний природы и тогда Вi есть математическое ожидание этой случайной величины (см. (6)).

6) Цена игры по критерию Байеса, обозначаемая нами через В, определяется по формуле (4):

7) Оптимальной среди чистых стратегий по критерию Байеса является стратегия Аk, для которой показатель эффективности максимален:

Критерий Лапласа (, , , ).

2) Исходя из теоретических, либо из практических соображений, констатируется, что ни одному из возможных состояний природы Пj, j=1,…,n, нельзя отдать предпочтения. Потому все состояния природы считают равновероятностными, т.е. qj=n-1, j=1,…,n. Этот принцип называют принципом «недостаточного основания» Лапласа. Вероятности qj=n-1, j=1,…,n, удовлетворяют условию (1).

Поскольку вероятности состояний природы известны: qj=n-1, j=1,…,n, то мы находимся в ситуации принятия решения в условиях риска.

3) Пусть l=n, а в качестве матрицы В можно взять матрицу, получающуюся из матрицы А, если каждую строку последней заменить на произвольную перестановку ее элементов. В частности, можем положить В=А. В общем же случае элементы матрицы В имеют вид bij=aikj(i), i=1,…, m; j=1,…,n, где aik1(i), aik2(i),…,aikn(i) – некоторая перестановка элементов ai1, ai2,…,ain i-й строки матрицы А.

4) Пусть коэффициенты lj=n-1, j=1,…,n. Очевидно, они удовлетворяют условию (2).

Выбор коэффициентов lj, j=1,…,n, таким образом подтверждает полное доверие игрока А к принципу недостаточного основания Лапласа.

5) По формуле (3) показатель эффективности стратегии Аi по критерию Лапласа, обозначаемый нами через Li, равен:


7) Оптимальной стратегией Аk по критерию Лапласа является стратегия с максимальным показателем эффективности:

Заметим, что, как следует из (7) и (8), показатель эффективности Li будет максимальным тогда и только тогда, когда максимальной будет сумма , и потому в качестве показателя эффективности стратегии Аi можно рассмотреть число , а в качестве цены игры – число .

Тогда оптимальной будет стратегия, сумма выигрышей при которой максимальна.

Критерий Вальда ( – ).

1) Предположим, что А – матрица выигрышей игрока А.

2) Вероятности состояний природы неизвестны и нет возможности получить о них какую-либо статистическую информацию. Поэтому игрок А находится в ситуации принятия решения в условиях неопределенности.

3) Пусть l=1 и


4) Пусть коэффициент l1=1. Очевидно, условие (2) выполняется.

5) Обозначим показатель эффективности стратегии Аi по критерию Вальда через Wi. В силу (9) и значения коэффициента l1=1, по формуле (3) имеем:


Таким образом, показатель эффективности стратегии Аi по критерию Вальда есть минимальный выигрыш игрока А при применении им этой стратегии.

6) Цена игры по критерию Вальда, обозначим ее через W, находится по формуле (4):

7) Оптимальной среди чистых стратегий по критерию Вальда является стратегия Аk с максимальным показателем эффективности:

Другими словами, оптимальной среди чистых стратегий по критерию Вальда считается та чистая стратегия, при которой минимальный выигрыш является максимальным среди минимальных выигрышей всех чистых стратегий. Таким образом, оптимальная стратегия по критерию Вальда гарантирует при любых состояниях природы выигрыш, не меньший максимина:


В силу (10), критерий Вальда является критерием крайнего пессимизма игрока А, а количественным выражением этого крайнего пессимизма является значение коэффициента l1, равное 1. Игрок А, принимая решение, действует по принципу наибольшей осторожности.

Хотя арабская пословица и гласит: «Кто боится собственной тени, тому нет места под солнцем», - тем не менее этот критерий уместен в тех случаях, когда игрок А не столько хочет выиграть, сколько не хочет проиграть. Использование принципа Вальда в обиходе подтверждается такими поговорками как «Семь раз отмерь – один раз отрежь», «Береженого Бог бережет», «Лучше синица в руках, чем журавль в небе».

Критерий Ходжа-Лемана .

1) Предположим, что матрицей выигрышей игрока А является матрица А.

2) Известны вероятности qi=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, удовлетворяющие условию (1).

Таким образом, игроку А надлежит принимать решение в условиях риска.

3) Пусть l=2,


· показатель эффективности стратегии Аi по критерию Байеса.

Матрица В примет вид


Очевидно, что эти коэффициенты удовлетворяют условию (2).

5) По формуле (3), с учетом (11), (12), и (13), показатель эффективности стратегии Аi по критерию Ходжа-Лемана равен:

Gi=libi1+l2bi2=(1-l)Wi+lBi=(1-l)aij+ i=1,…,m.

В правой части формулы (14) коэффициент lÎ есть количественный показатель степени доверия игрока А данному распределению вероятностей qi=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, а коэффициент (1-l) характеризует количественно степень пессимизма игрока А. Чем больше доверия игрока А данному распределению вероятностей состояний природы, тем меньше пессимизма и наоборот.

6) Цену игры по критерию Ходжа-Лемана находим по формуле (4):

7) Оптимальной стратегией по критерию Ходжа-Лемана является стратегия Аk с наибольшим показателем эффективности:

Отметим, что критерий Ходжа-Лемана является как-бы промежуточным критерием между критериями Байеса и Вальда. При l=1, из (14) имеем:Gi=Bi и потому критерий Ходжа-Лемана превращается в критерий Байеса. А при l=0, из (14): Gi=Wi и, следовательно, из критерия Ходжа-Лемана получаем критерий Вальда.

Критерий Гермейера .

1) Пусть матрица А является матрицей выигрышей игрока А.

2) Даны вероятности qi=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, удовлетворяющие условию (1).

Т.о. игрок А находится в ситуации принятия решений в условиях риска

размера m x 1.

4) Полагаем l1=1. Условие (2), очевидно, выполняется.

5) Показатель эффективности стратегии Аi по критерию Гермейера определяем по формуле (3) с учетом (15) и того, что l1=1:


Если игрок А придерживается стратегии Аi, то вероятность выигрыша aij при этой стратегии и при состоянии природы Пj равна, очевидно, вероятности qj этого состояния природы. Поэтому формула (16) показывает, что показатель эффективности стратегии Аi по критерию Гермейера есть минимальный выигрыш при этой стратегии с учетом его вероятности.

6) Цена игры по критерию Гермейера определяется по формуле (4):

7) Оптимальной стратегией по критерию Гермейера считается стратегия Аk с наибольшим показателем эффективности:

Заметим, что критерий Гермейера можно интерпретировать как критерий Вальда, применимый к игре с матрицей


Критерий Гермейера так же, как и критерий Вальда является критерием крайнего пессимизма игрока А, но, в отличие от критерия Вальда, игрок А, принимая решение с максимальной осмотрительностью, учитывает вероятности состояний природы.

В случае равномерного распределения вероятностей состояний природы: qj=n-1, j=1,…,n, показатель эффективности стратегии Аi, в силу формулы (16), будет равен Gi=n-1aij и, следовательно, критерий Гермейера эквивалентен критерию Вальда, т.е. стратегия, оптимальная по критерию Гермейера, оптимальна и по критерию Вальда, и наоборот.

Критерий произведений .

1) Пусть матрицей выигрышей игрока А является матрица А, все элементы которой положительны:

aij>0, i=1,…,m; j=1,…,n.

2) Известны вероятности qj=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, и удовлетворяют условию (1).

3) Пусть l=1 и


размера m x 1.

4) Пусть l1=1. Условие (2) выполняется.

5) Показатель эффективности стратегии Аi по критерию произведений в соответствии с формулами (3) и (17) равен

.

6) Цена игры по критерию произведений вычисляется по формуле (4):

7) Оптимальной стратегией по критерию произведений является стратегия Аk с наибольшим показателем эффективности:

Отметим, что для критерия произведений является существенным положительность всех состояний вероятностей состояний природы и всех выигрышей игрока А.

Максимаксный критерий (.-).

2) Вероятность состояний неизвестны. Решение принимается в условиях неопределенности.

3) Пусть l=1 и


размера m x 1.

4) Коэффициент l1 выбираем равным 1: l1=1. При этом условие (2), очевидно, выполняется.

5) Показатель эффективности стратегии Аi по максимаксному критерию обозначим через Мi и определим его по формуле (3) с учетом (18) и того, чтоl1=1:


Таким образом, показатель эффективности стратегии Аi по максимаксному критерию есть наибольший выигрыш при этой стратегии.

6) Цена игры по максимаксному критерию, обозначаемая нами через М, определяется по формуле (4):


Очевидно, что это есть наибольший элемент матрицы А.

7) Оптимальная стратегия по максимаксному критерию есть стратегия Аk с наибольшим показателем эффективности:

Из формулы (19) заключаем, что максимаксный критерий является критерием крайнего оптимизма игрока А. Количественно это выражается тем, что l1=1. Этот критерий противоположен критерию Вальда. Игрок А, пользуясь максимаксным критерием, предполагает, что природа П будет находиться в благоприятнейшем для него состоянии, и, как следствие отсюда, ведет себя весьма легкомысленно, с «шапкозакидательским» настроением, поскольку уверен в наибольшем выигрыше. Вместе с тем, в некоторых случаях этим критерием пользуются осознанно, например, когда перед игроком А стоит дилемма: либо получить наибольший выигрыш, либо стать банкротом. Бытовое отражение подобных ситуаций иллюстрируется поговорками: «Пан или пропал», «Кто не рискует, тот не выигрывает» и т.п.

Оптимальная стратегия по максимальному критерию гарантирует игроку А возможность выигрыша, равного максимаксу.

.

Критерий пессимизма-оптимизма Гурвица с показателем оптимизма lÎ ( – ).

1) Пусть А – матрица выигрышей игрока А.

2) Вероятности состояний природы неизвестны и нет возможности получить о них какую–либо надежную статистическую информацию.

Таким образом, решение о выборе оптимальной стратегии будет приниматься в условиях неопределенности.

3) Положим l=2. Элементы матрицы В


4) Коэффициенты l1 и l2 выбираем следующим образом:


В формуле (22) l - показатель оптимизма, а (1-l) – показатель пессимизма игрока А при выборе им оптимальной стратегии. Чем ближе к единице показатель оптимизма, тем ближе к нулю показатель пессимизма, и тем больше оптимизма и меньше пессимизма. И наоборот. Если l=0,5, то и 1-l=0,5, т.е. показатели оптимизма и пессимизма одинаковы. Это означает, что игрок А при выборе стратегии ведет себя нейтрально.

Таким образом, число l выбирается в пределах от 0 до 1 в зависимости от склонности игрока А к оптимизму или пессимизму.

6) Цена игры по критерию Гурвица Н определяется из формулы (5):


7) Оптимальная стратегия Аk по критерию Гурвица соответствует показателю эффективности

Критерий Гурвица является промежуточным между критерием Вальда и максимаксным критерием и превращается в критерий Вальда при l=0 и - в максимаксный критерий при l=1.

Обобщенный критерий Гурвица с коэффициентами l1,…, ln (, ).

1) Пусть А – матрица выигрышей игрока А.

2) Вероятности состояний природы неизвестны. Так что решение принимается в условиях неопределенности.

3) Матрица В получается из матрицы А перестановкой элементов каждой ее строки в неубывающем порядке:

bi1£bi2£…£bin, i=1,…,m.

Таким образом, в 1-м столбце матрицы В стоят минимальные, а в n-м столбце максимальные выигрыши стратегий. Другими словами, в 1-м столбце матрицы В стоят показатели эффективности стратегий по критерию Вальда, а в n-м столбце – показатели эффективности стратегий по максимаксному критерию.

4) Коэффициенты l1,…, ln выбираются удовлетворяющими условиям (2) соответственно различной степени склонности игрока А к оптимизму. При этом показателем пессимизма игрока А называется число


где целая часть числа , а показателем оптимизма игрока А называется число


Очевидно, что lр+l0=1.

5) Показатель эффективности стратегии Аi по обобщенному критерию Гурвица определяется по формуле (3):


6) Цену игры по обобщенному критерию Гурвица определим по формуле (4):

7) Оптимальные стратегии находятся стандартно: Аk – оптимальная стратегия, если Gk=G.

Отметим, что обобщенный критерий Гурвица учитывает все выигрыши при каждой стратегии, что необходимо для более полной картины эффективности стратегий. Отметим также, что некоторые из приведенных выше критериев являются частными случаями обобщенного критерия Гурвица.

Отметим, что если В=А, то коэффициенты lj, j=1,…,n, можно формально интерпретировать как вероятности состояний природы и в, таком случае, обобщенный критерий Гурвица совпадает с критерием Байеса.

Если lj=n-1, j=1,…,n, то обобщенный критерий Гурвица превращается в критерий Лапласа.

Если l1=1, l2=…=ln=0, то обобщенный критерий Гурвица представляет собой критерий Вальда.

При l1=…=ln-1=0, ln=1, из обобщенного критерия Гурвица получаем максимаксный критерий.

Если l1=1-l, l2=…=ln-1=0, ln=l, где lÎ, то обобщенный критерий Гурвица является критерием Гурвица.

Если В=А и qi=p(Пj), j=1,…,n – вероятности состояний природы, удовлетворяющие условиям (1), то выбрав коэффициенты lj, j=1,…,n, следующим образом: l1=1-l+lq1, lj=lqj, j=2,…,n, где lÎ, мы из обобщенного критерия Гурвица получим критерий Ходжа Лемана.

3. ЗАДАЧА В УСЛОВИЯХ ПОЛНОЙ НЕОПРЕДЕЛЁННОСТИ

Допустим, инвестор принимает решение о строительстве жилья определенного типа в некотором месте. Инвестор действует в условиях неопределенности (информационной непрозрачности) на рынке жилья. Чтобы сформировать представление о ситуации на рынке жилья на момент завершения строительства ему необходимо учесть цены на недвижимость, конкуренцию на рынке жилья, соотношение предложения и спроса, курсы валют и многое другое. Статистические данные свидетельствуют о том, что одной из главных составляющих стоимости жилья является место его расположения.

Рассмотрим математическую модель данной ситуации. Мы имеем игру с природой, где игрок А – инвестор, природа П – совокупность возможных ситуаций на рынке жилья на момент завершения строительства, из которых можно сформировать, например, пять состояний П1, П2, П3, П4, П5 природы. Известны приближенные вероятности этих состояний q1=p(П1)»0,30; q2=p(П2)»0,20; q3=p(П3)»0,15; q4=p(П4)»0,10; q5=p(П5)»0,25. Предположим, что игрок А располагает четырьмя (чистыми) стратегиями А1, А2, А3, А4, представляющими собой выбор определенного места для постройки жилья. Множество этих мест ограничено градостроительными решениями, стоимостью земли и т.д. Инвестиционная привлекательность проекта определяется как процент прироста дохода по отношению к сумме капитальных вложений, оценка которых известна при каждой стратегии и каждом состоянии природы. Эти данные представлены в следующей матрице выигрышей игрока А:


размера 4 х 5, в последней, дополнительной строке которой указаны вероятности состояний природы. Матрица (24) не содержит доминируемых (в частности, дублируемых) строк и все ее элементы положительны.

Инвестору предстоит выбрать участок земли так, чтобы наиболее эффективно использовать капиталовложения.

Подсчитаем показатели эффективности стратегий

· по критериям Байеса, Гермейера и критерию произведений при условии, что инвестор А доверяет данному распределению вероятностей состояний природы,

· по критерию Лапласа, если инвестор А не доверяет данному распределению вероятностей состояний природы и не может отдать предпочтения ни одному из рассматриваемых состояний природы,

· по критерию Ходжа- Лемана с коэффициентом доверия к вероятностям состояний природы, например, l=0,4,

· по критерию Вальда, максимаксному критерию, критерию пессимизма-оптимизма Гурвица с показателем оптимизма, например, l=0,6, и по обобщенному критерию Гурвица с коэффициентами, например, l1=0,35; l2=0,24; l3=0,19; l4=0,13; l5=0,09.

Результаты подсчета показателей эффективности и оптимальные стратегии представлены в следующей таблице:

Таблица показателей эффективности и оптимальных стратегий

Стратегии

Критерии

Ходжа-Лемана

Гермейгера

Произ-ведений

Макси-максный

Обобщенный Гурвица с коэффиц

l1=0,35
l2=0,24
l3=0,19
l4=0,13
l5=0,09

Оптимал. стратегии


Заметим, что, поскольку, в критерии Ходжа- Лемана показатель доверия игрока А распределению вероятностей состояний, указанных в последней строке матрицы (24), равен l=0,4, то показатель пессимизма игрока А равен 1-l=0,6.

В критерии Гурвица показатель оптимизма игрока А равен l=0,4 и, следовательно, показатель его пессимизма также равен 1-l=0,6.

В обобщенном критерии Гурвица по формуле (23) показатель пессимизма

= 0,35+0,24+0,5×0,19=0,685

и, следовательно, показатель оптимизма l0=1-0,685=0,315.

Таким образом, во всех примененных критериях, учитывающих индивидуальные проявления игрока А к пессимизму и оптимизму, игрок А более склонен к пессимистической оценке ситуации, чем к оптимистической, примерно с одинаковыми показателями.

В результате применения девяти критериев мы видим, что в качестве оптимальной стратегии А1 выступает 3 раза, стратегия А3 – 6 раз и стратегия А4 – 1 раз. Поэтому, если у инвестора А нет никаких обоснованных серьезных возражений, то в качестве оптимальной можно рассматривать стратегию А3.

Критерий Сэвиджа (критерий минимаксного риска).

Критерий Гурвица.

Решение.

1. Максиминный критерий Вальда .max min а ij

Вычислим минимальные значения по строкам min а ij , а далее из них выберем максимальное.

Таким образом, получаем Н =max min а ij = 15 i j

Ответ: оптимальной стратегией 1-го игрока А является

стратегия А 4 .

Параметр Гурвица возьмем равным γ =0,6: γ= min а ij +(1-γ) max а ij

5 10 18 255 25 5*0,6+0,4*25=13

А = 8 7 8 23 7 23 7*0,6+0,4*23=13,4

21 18 12 21 12 18 12*0,6+0,4*18=14,4

20 22 19 1515 22 15*0,6+0,4*22=17,8

Получаем H =max=17.8

стратегия А 4 .

Необходимо построить матрицу рисков.

Для этого:

1) вычислить максимальные значения по столбцам

2) вычислить матрицу рисков: r ij = max а ij - а ij

21-5 22-10 19-18 25-25 16 12 1 0

r ij = 21-8 22-7 19-8 25-23 = 13 15 11 2

21-21 22-18 19-12 25-21 0 4 7 4

21-20 22-22 19-19 25-15 1 0 0 10

3) вычислить максимальные значения по строкам и из них выберем строку с минимальным значением:

r ij = 0 4 7 4 7

Получаем H =minmax r ij = 7 при применении стратегии А 3 .

Ответ: оптимальной стратегией первого игрока является

стратегия А 3 .

4. Критерий Лапласа. n

Вычислить средние арифметические по строкам [ 1/n ∑ а ij ]

5 10 18 25 0.25 (5+10+18+25)=14.5 j =1

A = 8 7 8 23 0.25 (8+7+8+23)=11.5

21 18 12 21 0.25 (21+18+12+21)=18

20 22 19 15 0.25 (20+22+19+15)=19

Получаем H =max [ 1/n ∑ а ij ] =19 при применении стратегии А 4 .

Ответ: оптимальной стратегией первого игрока является

стратегия А 4 .

В 1 В 2 В 3 В 4 n

А 1 5 10 18 25 H =max∑P j а ij

А 2 8 7 8 23 i j =1

А 3 21 18 12 21

А 4 20 22 19 15

Вероятности стратегий второго игрока.

В 1 В 2 В 3 В 4
0.2 0.15 0.35 0.3

5*0.2+10*0.15+18*0.35+25*0.3=16.30

8*0.2+7*0.15+8*0.35+23*0.3=12.35

21*0.2+18*0.15+12*0.35+21*0.3=17.40

20*0.2+22*0.15+19*0.35+15*0.3=18.45

Получаем Н = 18,45 при применении стратегии А 4 .

Ответ: оптимальной стратегией первого игрока является

стратегия А 4 .

ПРИМЕР №2

Предприятие имеет возможность самостоятельно планировать объемы выпуска сезонной продукции А 1 , А 2 , А 3 . Не проданная в течении сезона продукция позже реализуется по сниженной цене. Данные о себестоимости продукции, отпускных ценах и объемах реализации в зависимости от уровня спроса приведены в таблице:



Требуется:

1) придать описанной ситуации игровую схему, указать допустимые стратегии сторон, составить платежную матрицу

Указание. Для уменьшения размерности платежной матрицы считать, что одновременно на все три вида продукции уровень спроса одинаков:

повышенный, средний или пониженный.

В игре участвуют 2 игрока: А - производитель, В - потребитель.

Игрок А стремится реализовать свою продукцию так, чтобы получить максимальную прибыль. Стратегиями игрока А являются:

А 1 - продавать продукцию при повышенном состоянии спроса

А 2 - продавать продукцию при среднем состоянии спроса

А 3 - продавать продукцию при пониженном состоянии спроса

Игрок В стремится приобрести продукцию с минимальными затратами. Стратегиями игрока В являются:

В 1 - покупать продукцию при повышенном состоянии спроса

В 2 - покупать продукцию при среднем состоянии спроса

В 3 - покупать продукцию при пониженном состоянии спроса

Интересы игроков А и В - противоположны. Определим цену продукции в течение сезона и после уценки:

Рассчитаем элементы платежной матрицы

Предложение Спрос
стратегии Повышенный спрос 14+38+24 Средний спрос 8+22+13 Пониженный спрос 5+9+7
Повышенный спрос 14+38+24 14*0,8+38*0,5+ 24*1,3=61,4 8*0,8+(14-8) *0,2+ 22*0,5+(38-22)*(-5) +13*1,3+(24-13)*0,2 =29,7 5*0,8+(14-5)*0,2+ 9*0,5+(38-9)*(-5)+ 7*1,3+(24-7)=8,3
Средний спрос 8+22+13 8*0,8+22*0,5+ 13*1,3=34,3 8*0,8+22*0,5+ 13*1,3=34,3 5*0,8+(8-5)*0,2+ 9*0,5+(22-9)*(-5)+ 7*1,3+(13-7)*0,2 =12,9
Пониженный спрос 5+9+7 5*0,8+9*0,5+7*1,3 =17,6 5*0,8+9*0,5+ 7*1,3=17,6 5*0,8+9*0,5+ 7*1,3=17,6

Платежная матрица примет вид

Стратегии В 1 В 2 В 3 α i =min а ij j
А 1 61.4 29.7 8.3 8.3
А 2 34.3 34.3 12.9 12.9
А 3 17.6 17.6 17.6 17.6
β j =max а ij i 61.4 34.3 17.6

α = max α i = 17.6 β = min β j = 17.6

Так как α = β = ν = 17,6, то найдена седловая точка. Значит оптимальное решение: А 3 ; В 3

Производитель (игрок А) получит гарантированную прибыль в размере 17,6 ден.ед., если будет реализовывать свою продукцию при пониженном уровне спроса в объеме 5,9 и 7 ед. соответственно продукции А 1 , А 2 и А 3

Контрольные вопросы:

1.Дайте определение конфликтной ситуации.

2.Как называется математическая модель конфликтной ситуации?

3.Как называются заинтересованные стороны в теории игр?

4.Какая игра называется антагонистической? Приведите пример.

5.Дайте определение понятию «стратегия».

6.Что понимается под исходом конфликта?

7.Дайте определение понятию «выигрыш».

8.На какие классы делятся игры в зависимости от числа игроков?

9.В чем состоит цель игрока А при выборе стратегии?

10. В чем состоит суть максиминного принципа оптимальности и как называется выигрыш, полученный в соответствии в этим принципом?

11.Почему максимин α называют нижней ценой игры?

12.В чем состоит цель игрока В при выборе стратегии?

13.Почему минимакс β называют верхней ценой игры?

14.Почему справедливо неравенство α < β ?

15.Дайте определение цены игры в чистых стратегиях.

16.Какая игра называется игрой в смешанных стратегиях?

17.Как найти оптимальную смешанную стратегию игрока А и цену игры 2 х n геометрически?

18.Что в теории игр понимается под термином «природа»?

19.Приведите примеры в которых решение принимается в условиях неопределенности, связанной с неосознанным принятием различных факторов.

20.Чем отличается выбор оптимальных стратегий игроков в играх с природой от антагонистических игр?

21.Что понимается под риском игрока в игре с природой, и каким образом формируется матрица рисков,

22.Дайте определение критерия Вальда и как по нему определяется выигрыш?

23. Дайте определение критерия Севиджа и как по нему определяется выигрыш?

24. Дайте определение критерия Лапласа и как по нему определяется выигрыш?

25. Дайте определение критерия Байеса и как по нему определяется выигрыш?

26. Какой принцип выбора оптимальной стратегии лежит в основе критерия пессимизма –оптимизма Гурвица относительно выигрышей?

8.Лекция. Системы массового обслуживания.

В условиях неопределенности в самом общем случае возможны два подхода к принятию стратегического решения.

Первый подход, когда руководитель может использовать имеющуюся информацию или опыт для идентификации своих предположений относительно вероятностей возможных внешних условий, в каких окажется его компания. В случае когда вероятность состояний объективных условий неизвестна, в соответствие с критерием Байеса-Лапласа нужно исходить из их равновозможности. То есть при отсутствии основания для иного надо предполагать равенство вероятностей возникновения условий, приводящих к каждому из возможных результатов. Применение этого критерия позволяет свести задачу к варианту с полной информацией состояния объективных условий, условия неопределенности становятся аналогичными условиям риска.

При втором подходе, когда степень неопределенности слишком высока, то руководитель предпочитает не делать допущений относительно вероятностей различных внешних условий. Применяя данный подход для оценки предполагаемых стратегий возможны следующие критерии решения:

· критерий крайнего оптимизма;

· критерий Вальда, называемый также максимином;

· альфа-критерий Гурвица;

· критерий Сэвиджа, называемый также критерием отказа от минимакса.

Выбор критерия предопределяется конкретными обстоятельствами, а также субъективными психологическими особенностями, темпераментом и общее мировоззрением руководства фирмы (оптимистические или пессимистические; консервативные или прогрессивные). Рассмотрим эти критерии на следующем примере.

Пример 4.Для реализации по цене 50 руб. за 1 ед. закупается некоторое количество скоропортящегося продукта по цене 30 руб. за единицу. Из наблюдений известно, что реализация продукта может произойти на уровне 1 ед., 2 ед., 3 ед. и 4 ед. Если продукт за день не продан, то в конце дня он продается по сниженной цене 20 руб. за единицу. Нужно определить, сколько еди­ниц должен закупать менеджер для того, чтобы его решение было опти­мальным в соответствии с разными критериями оптимальности.

При продаже каждой единицы продукта будет получена прибыль в разме­ре 20 руб. (50 -30). При продаже каждой единицы закупленного продукта по сниженной цене убыток от реализации составит 10 руб. (30 - 20).

Составим табл. 8.5, иллюстрирующую возможные результаты торгов­ли.

Таблица 8.1.Возможные доходы при разных вариантах развития событий

Возможный вариант закупки, ед.
-10

По горизонтали расположим возможные варианты спроса на продук­цию за день, по вертикали - возможные варианты решения ЛПР о закуп­ках продукции. В каждой клетке таблицы рассчитаем прибыль (со знаком «плюс») или убыток (со знаком «минус») от операций реализации.



Критерий крайнего оптимизма диктует менеджеру страте­гию действий, при которой он получает возможность зарабо­тать максимальный доход. Это случится, если менеджер закупит максимально возможное количество продукции и всю ее реали­зует в течение дня:

4 х (50 - 30) = 80 (руб.).

Такая стратегия и наиболее рискованная, потому что в слу­чае минимальных продаж (1 ед.) менеджер получит и макси­мальный убыток:

1 х (50 - 30) + 3 х (20 - 30) = -10 (руб.).

Критерий решения Вальда - критерий крайнего пессимизма предпола­гает наиболее осторожную стратегию поведения, гарантирую­щую максимизацию минимального дохода. Например, минимальный до­ход при различных вариантах закупок может составить 20, 10, 0 или -10 руб. Если менеджер закупит 1 ед. продукции, то мини­мальный выигрыш в размере 20 руб. ему гарантирован.

Этот критерий ориентирует лицо, принимающее решение, на наихудшие условия и рекомендует выбрать ту стратегию, для которой выигрыш максимален. В других, более благоприятных условиях использование этого критерия приводит к потере эффективности системы или операции. Поскольку критерий консервативен, он особенно хорошо подходит для мелких коммерческих фирм, выживание которых зависит от способности избежать убытков.

Критерий Сэвиджа , известный также под названием «дикий принцип», принцип для просчетов, критерий минимаксного риска, принцип минимакса последствий ошибочных решений и т.д. Критерий Сэвиджатакже пессимистический , но при выборе оптимальной стратегии в со­ответствии с ним следует ориентироваться не на доход, а на воз­можные потери с учетом упущенной выгоды.

Данные о возмож­ных потерях представим в табл. 8.2.

Таблица 8.2. Возможные потери при различных вариантах развития событий

Возможный вариант спроса, ед. Возможный вариант закупки, руб.

Как видно из табл. 8.2, при покупке 2 ед. и продаже 1 ед. по цене реализации, вторую мы реализуем по сниженной цене, те­ряя 10 руб. При покупке 2 ед. и спросе в 3 ед. 2 ед. мы реализуем по обычной цене, при этом теряя упущенную выгоду от отсутст­вия 1 ед. продукта в размере 20 руб.

Максимальные потери при каждом из вариантов закупок со­ставят 60, 40, 20 и 30 руб. Руководствуясь критерием Сэвиджа, необходимо выбрать из них минимальное значение 20 руб. и за­купать 3 ед. продукции.

В соответствии с этим критерием, если требуется в любых условиях избежать большого риска, то оптимальным будет то решение, для которого риск, максимальный при различных вариантах условий, окажется минимальным. Руководитель при использовании критерия Сэвиджа явно отказывается от попыток максимизировать отдачу, выбирая стратегию с удовлетворительной отдачей при более низком риске. Критерий Сэвиджа, следовательно, особенно полезен для оценки серии проектов на протяжении длительного периода.

Критерий Гурвица (пессимизма-оптимизма – этокомпро­миссный способ принятия решений в условиях неопределенно­сти. Для каждой из возможностей - получение максимального дохода и минимального дохода - определяется вероятность ее наступления. Сумма вероятностей двух вариантов должна быть равна единице. Затем вычисляется значение целевой функции как суммы произведений каждого результата на вероятность его достижения. Значения максимального и минимального доходов взяты из табл. 8,1. Расчеты представим в табл. 8.3.

Таблица 8 .3. Расчет значений целевой функции

Допустим, экспертным путем определено, что вероятность получения максимального дохода - 0,7, минимального дохо­да - 0,3. Тогда для решения закупать 2 ед. продукции значение целевой функции будет равно

0,7 х 40 + 0,3 х 10 = 31 (руб.)

Максимальное значение целевой функции 53 руб. достига­ется при выборе решения закупать 4 ед. продукции. Это реше­ние и будет оптимальным согласно критерию Гурвица. Относи­тельность такого выбора определяется степенью объективности при оценке вероятностей разных исходов.

Дерево решений. В управленческой практике нередко возникают ситуации, когда принятие одного решения ставит менеджера или соб­ственника компании перед следующим выбором. Когда нуж­но принять несколько решений в условиях неопределенности и при этом каждое следующее решение зависит от предыдуще­го, для решения такой задачи применяют схему, называемую де­ревом решений.

Дерево решений - это графическое изображение процес­са принятия решений, в котором отражены альтернативные решения и состояния среды, соответствующие вероятности, и «выигрыши» для любых комбинаций решений и состояний среды.

Построение и анализ «дерева решения» прием­лемы в любом случае, если последовательный ряд обусловленных решений принимается в условиях риска. Под обусловленным решени­ем имеется в виду решение, которое зависит от обстоятельств или опционов, появляющихся позднее. Построение «дерева решения» начинается с самого первого, или изначального, решения и продвигается вперед по времени через ряд последовательных событий и решений. При каждом решении или событии у этого «дерева» появляются ответвления, которые показы­вают каждое возможное направление действия до тех пор, пока, на­конец, все логические последовательности и вытекающие из них отдачи будут вычерчены.

Одним из важнейших условий принятия эффективного решения, направленного на достижение цели во временной перспективе, является наличие соответствующего объема релевантной информации. Неполная информация, невозможность достоверного предсказания будущих событий и факторов, могущих повлиять на результат, к которому приводит принимаемое решение, являются признаками неопределенности. Достаточно большая часть управляющих решений принимается в условиях неопределенности. Потенциал неопределенности - внешняя среда организации.

Принятие решений в условиях неопределенности связывается с понятием риска и производится с помощью методов исследования операций и теории статистических решений. В общем виде задача принятия решения в условиях неопределенности представляется в виде таблицы эффективности (табл.1).

Таблица1.

О 1 О 2 ... O n
p 1 a 11 a 12 ... a 1 n
p 2 a 21 a 22 ... a 2 n
... ... ... ... ...
p m a m1 a m2 ... a mn

где O n - условия обстановки, которые точно неизвестны, но о которых можно сделать n-предложений (спрос, количество поставщиков, удовлетворенность материалами);

P m -возможные стратегии, линии поведения решения.

Каждой паре стратегии и обстановки, соответствуют выигрыши -A mn .

Выигрыши, указанные в таблице, являются рассчитанными показателями эффективности стратегии (решения) в различных обстановках.

Представленная задача направлена на принятие решений при разработке планов развития предприятий, разработке производственных программ, планов выпуска новых видов продукции, направленности инноваций, выбора стратегий страхования, инвестиции, средств и т.д.

В теории статистических решений применяется специальный показатель риска, который показывает выгодность принимаемой стратегии в данной обстановке с учетом ее неопределенности. Риск рассчитывается как разность между ожидаемым результатом действий при наличии точных данных обстановки и результатом, который может быть достигнут, если эти данные неопределенны. По этой разности рассчитывается таблица рисков выпуска нового вида продукции. Таблица рисков дает возможность оценить качество различных решений и установить полноту реализации возможностей при наличии риска. Выбор наилучшего решения зависит от степени неопределенности.

В зависимости от степени неопределенности обстановки различают 3 варианта принятия решений:

1. Выбор оптимального решения, когда вероятности возможных вариантов обстановки известны. Оптимальное решение определяется по max сумм произведений вероятностей различных вариантов обстановки P(O 1) на соответствующие значения выигрышей А (таблица 6 эффективности) по каждому решению.

2. Выбор оптимального решения, когда вероятности возможных вариантов обстановки неизвестны.

3. Выбор оптимального решения по принципам подхода к оценке результата действий.

В условиях неизвестной вероятности обстановки возможно принятие следующих решений:

а) max-min или “рассчитывай на худшее“ - выбор решения, гарантирующий выигрыш в любых условиях, не меньше, чем наибольший возможный в худших условиях;

б) min max риск в любых условиях. За оптимальное принимается решение, для которого риск, max при различных вариантах обстановки, кажется минимальным.

За оптимальное решение в зависимости от линии ориентации ЛПР принимается решение, для которого показатель G (критерий пессимизма - оптимизма Гурвица) окажется максимальным:

где - минимальный выигрыш, соответствующий решению m;

Максимальный выигрыш, соответствующий решению m;

k - коэффициент, характеризующий линию поведения (ориентации) ЛПР, .

Графически значение k по отношению к линии поведения можно интерпретировать следующей схемой:

значение k


0 0,25 0,5 0,75 1

Линия ориентации в расчете

на лучшее на худшее

Задача:

Предлагается 3 варианта вложения инвестиций:

1) Вложить все имеющиеся средства в акции компании “Нефть-АГ”, что гарантирует высокий доход при соответствующей обстановке;

2) Вложить все средства в ГКО при гарантии низкого и стабильного дохода;

3) Вложить часть средств в акции “Нефть-АГ”, часть в ГКО - т.е. произвести диверсификацию портфеля средств.

Перспектива обозначена тремя вариантами обстановки (исхода событий).

Принять решение по проблеме вложения инвестиций, имея в качестве исходных данных таблицу выигрышей (табл.2).

Таблица 2.

Pi/Oi O 1 O 2 O 3
P 1 0.99 0.1
P 2 0.5 0.5 0.3
P 3 0.25 0.7 0.4

P i - вариант решения;

O i - вариант обстановки;

O 1 - компания “Нефть-АГ” - обанкротилась, ГКО - приносит стабильный доход.

O 2 - компания ”Нефть-АГ” - процветает;

O 3 - кризис в экономике.

Определим оптимальное решение, при котором выигрыш в любых условиях будет не меньше, чем наибольший возможный в худших условиях (max-min).

Из табл. 2 для решения P 1 наименьший выигрыш составит 0, для P 2 - 0.3, для P 3 - 0.25.

Наибольший возможный выигрыш при самом плохом стечении обстоятельств составит 0.3, что соответствует принятию решения P 2 , т.е. при любых вариантах обстановок решение P 2 будет не самым худшим.

Оптимальное решение при условии, что риск окажется минимальным из максимальных его значений при различных вариантах решений определяется из табл.7. Предварительно рассчитывается матрица рынков. При этом максимальный риск при принятии решения P 1 - 0.5; при P 2 - 0.49; при P 3 - 0.29. Из ряда максимальных рисков за оптимальное принимается решение P 3 , имеющее минимальный уровень риска 0,29.

Рассчитаем критерий пессимизма - оптимизма Гурвица для различных вариантов решений в зависимости от значения принятого коэффициента k.

Для решения P 1

Решение:

Рассчитаем матрицу рисков вложения инвестиций (табл.3).

Таблица3.

Pi/Oi O 1 O 2 O 3
P 1 0.5-0=0.5 0.99-0.99=0 0.4-0.1=0.3
P 2 0.5-0.5=0 0.99-0.5=0.49 0.4-0.3=0.1
P 3 0.5-0.25=0.25 0.99-0.7=0.29 0.4-0.4=0

При условии равновероятности обстановок их вероятности равны и составляют:

P(O 1)=P(O 2)=P(O 3)=0.33

Математически ожидания выигрышей при условии равновероятности обстановок определятся из выражения:

W i =P(O i)*A ij ,

где P(O i)-вероятность будущей обстановки;

A ij -выигрыш, соответствующий i-ому решению при j-той обстановке.

W 1 =0.33*0+0.33*0.99+0.33*0.1=0.3597

W 2 =0.33*0.5+0.33*0.5+0.33*0.3=0.329

W 3 =0.33*0.25+0.33*0.7+0.33*0.4=0.445

В условиях равновероятности будущих обстановок наиболее оптимальным является решение P 3.

При других значениях вероятностей обстановок решение может быть другим.

Выбор решения по критерию Гурвица:

для решения P 1: G 1 =0,495;

для решения P 2: G 2 =0,5*0,3+(1-0,5)*0,5=0,4;

для решения P 3: G 3 =0,5*0,25+(1-0,5)*0,7=0,475.

При k=0,5 за оптимальное принимается решение P 1 .

Аналогично рассчитываются значения G i при других значениях коэффициента.

Полученные значения G i сводим в таблицу 4.

Таблица4.

G i при заданных k i
P i /k i 0.00 0.25 0.5 0.75 1.00
P i 0.99 0.743 0.495 0.362
P 2 0.5 0.45 0.4 0.35 0.3
P 3 0.7 0.587 0.475 0.362 0.25
Выбранное решение P 1 P 1 P 1 P 1 P 3 P 2

Лицо, принимающее решение в соответствии с выбранным k i за оптимальное принимает решение, имеющее максимальное значение G i . При k i =0,75 - G max =0,362. За оптимальное принимается решение Р 1 или Р 3 .



Похожие публикации